top of page

ChatGPT outperforms crowd workers for text-annotation tasks

Writer's picture: Lille MyLille My

Updated: May 8, 2024


Edited by Mary Waters, Harvard University, Cambridge, MA; received March 27, 2023; accepted June 2, 2023

July 18, 2023

120 (30) e2305016120





Abstract

Many NLP applications require manual text annotations for a variety of tasks, notably to train classifiers or evaluate the performance of unsupervised models. Depending on the size and degree of complexity, the tasks may be conducted by crowd workers on platforms such as MTurk as well as trained annotators, such as research assistants. Using four samples of tweets and news articles (n = 6,183), we show that ChatGPT outperforms crowd workers for several annotation tasks, including relevance, stance, topics, and frame detection. Across the four datasets, the zero-shot accuracy of ChatGPT exceeds that of crowd workers by about 25 percentage points on average, while ChatGPT’s intercoder agreement exceeds that of both crowd workers and trained annotators for all tasks. Moreover, the per-annotation cost of ChatGPT is less than $0.003—about thirty times cheaper than MTurk. These results demonstrate the potential of large language models to drastically increase the efficiency of text classification.




Comentarios


This initiative is supported by the following organizations:

  • Twitter
  • LinkedIn
  • YouTube
logo_edited.png
bottom of page